Unit 6 Sequences and Series

Sequences:

A sequence is an ordered list of numbers that follow a specific pattern. The sequence may stop or may continue on indefinitely

$$
\begin{aligned}
& \text { Ex) } 5,7,9,11,13, \ldots \text { Pattem: }+2 \text { each time. } \\
& 7,21,63,189,567, \ldots \text { Pattern: } \\
& 100,50,25,12.5, \ldots \text { Pattern: }
\end{aligned}
$$

Notation:

The terms within a sequence are named in order using the notation t_{1}, t_{2}, t_{3}, etc.

$$
\left.\begin{array}{lllllll}
\text { Ex) } & 1, & 4, & 9, & 16, & 25, & 36, \ldots \\
& t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6}
\end{array}\right] \begin{aligned}
& \text { Ex) } 3,7,11,15,19,23,27,31,35, \ldots \\
& \\
& t_{4}=
\end{aligned}
$$

Representing Sequences:
To represent a sequence we can simply list out the first few terms

> this an contimue FOREVER...
or we can use a formula that describes how each term is generated.

General Term: * This helps us figaue out terms without hming to list out the entive paltern.

The general term is a formula used to describe a sequence that is based on the term number. (If you want to know the value of the $5^{\text {th }}$ term you put a 5 into the formula.)

Ex) $t_{n}=3 n-2$, find the first 3 terms

Term 1: $n=1$

 Find t_{2} and t_{3}.$$
\begin{aligned}
& t_{1}=3(1)-2 \\
& t_{1}=3-2 \\
& t_{1}=1
\end{aligned}
$$

$$
t_{n}=n^{2}+1, \text { find the } 23^{\text {rd }} \text { term } \therefore n=23
$$

If $t_{n}=7 n-5$, which term is equal to 51 ?
This means that some term in our seaunce is 51 and wr want to know which term ($t_{1}, t_{2}, t_{3}, \ldots$? ?) We want to Figure out n.

$$
51=7 n-5 \quad \text { Solue for } n \text {. }
$$

Types of Sequences:

There are two main types of sequences we will consider in this course they are:

Arithmetic Sequence

(addition/subtraction pattern)
Is a sequence that increases (or decreases)
by $\frac{\text { common difference. }}{+6+6+6}$
Ex) $7,13,19,25, \ldots$

Geometric Sequence
(multplication/division pattem)
Is a sequence that increases (or decreases)
by a common ratio. $\overbrace{}^{\times 3} \overbrace{}^{x^{3}}$
Ex) 2, $6,18,54, \ldots$

Arithmetic Sequences:

Is a sequence in which the difference between consecutive terms is a constant. This constant is called the common difference.

$-5,-1,3,7,11, \ldots$ common difference :
$2,9,16,23,30, \ldots$ cormmon difference
The general term of an arithmetic sequence can be found using the formula:

$a=$ value of the first term
$d=$ common difference between terms

Ex) Find the general term of the following sequences.
a) $8,12, \overbrace{1}^{+4}, \ldots$

$$
\left.\begin{array}{l}
t_{n}=a+(n-1) d \\
t_{n}=8+(n-1)(4) \\
t_{n}=8+4 n-4 \\
t_{n}=4 n+4 \quad \text { This can now be used } \\
\text { to find any term. }
\end{array}\right\}
$$

$\{$ c) $23,19,15,11, \ldots$

Ex) Determine the indicated term for each of the following.

* These terms are BIG! Find your general formula first *

$$
\text { a) } 8,11,14,17, \ldots \quad \text { find } t_{31}
$$

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& t_{n}=8+(n-1)(3) \\
& t_{n}=8+3 n-3
\end{aligned}
$$

$$
t n=3 n+5
$$

* Use to find $t_{31} *$
b) $37,30,23,16, \ldots$ find $t_{74} *$ what is different about din this case?

Find general formula.

Find t_{74}.

Ex) Determine how many terms are indicated by each of the following sequences. We want to know the term \#, n, For 442 .

Set up general formula

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& t_{n}=-20+(n-1)(11) \\
& t_{n}=-20+11 n-11 \\
& t_{n}=11 n-31
\end{aligned}
$$

We have our general formula and we know $t_{n}=442.50 \ldots$

$$
\begin{aligned}
& t_{n}=11 n-31 \\
& 442=11 n-31 \quad \text { Solve for } n . \\
& 442+31=1 \ln -31+3 t \\
& \frac{473}{11}=\frac{31 n}{x x} \\
& n=43
\end{aligned}
$$

b) $31,36,41, \ldots \quad \ldots, 791$ Try ME!

Arithmetic Means:

Arithmetic means are the terms between two non-consecutive terms on an arithmetic sequence.

Ex) $2,5,8,11,14,17,20,23$
The arithmetic means between 2 and 23 are
$5,8,11,14,1\} 20$ because these all fall between $2 \xi 23$
The arithmetic means between 5 and 17 are?

Ex) Find the foul arithmetic means between 27 and 47. We know there will be 4 numbers between $27!47$ so...

$t_{n}=a+(n-1) d$
$47=27+(6-1) \alpha$
$47=27+5 d$ Solve ford. If you know dy you can either:
a) Set up general formula : Solve for t_{2}, t_{3}, t_{4}, to
b) Count up inyour patten by d.

Ex) Determine the general term for the arithmetic sequence that has $t_{5}=53$ and $t_{17}=125$ as two of its terms.

$$
-\rightarrow,-1-\frac{53}{\substack{50}}
$$

What is d between each term? If we find d then we can use this to find a.

Arithmetic Series:

When the terms of a sequence are added together we call it a series.

$$
\begin{aligned}
& \text { Ex) } 3,5,7,9,11,13, \ldots \text { is an arithmetic sequence } \\
& 3+5+7+9+11+13+\ldots \text { is an arithmetic series }
\end{aligned}
$$

Notation:
The partial sums of a series are denoted using the following notation:
S_{5} means sum of the first 5 terms
S_{31} means sum of the first 31 terms
Ex) Given the series below, find the following partial sums.
$3+5+7+9+11+13+\ldots$
a) S_{3}
b) S_{7}
c) S_{79}

Ex) What is the sum of the first 100 natural numbers?

From this thinking we can develop a formula to determine the sum of an arithmetic series.

$$
S_{n}=\frac{n}{2}\left(a+t_{n}\right)
$$

$$
\begin{gathered}
\text { But } t_{n}=a+(n-1) d \text { so } \\
S_{n}=\frac{n}{2}[a+a+(n-1) d] \\
S_{n}=\frac{n}{2}[2 a+(n-1) d]
\end{gathered}
$$

Ex) Find the sum of the first 70 terms of the series given below.

$$
8+15+22+\ldots
$$

Ex) Determine S_{37} for the series $4+10+16+\ldots$

Ex) Determine the sum of each series given below.
a) $17+30+43+56+\ldots . \quad \ldots+563$
b) $249+243+237+\ldots \quad+27$

Ex) Determine S_{11} for the arithmetic series that has $t_{1}=-9$ and $t_{11}=31$ as two of its terms.

Ex) If $t_{1}=25, t_{n}=382$, and $S_{n}=4477$ for a particular series, determine the number of terms n represented in the partial sum.

Ex) The sum of the first two terms of an arithmetic series is 13 and the sum of the first four terms is 46 . Determine the first six terms of the series and the sum to six terms.

Now Try
Page 27 \#1 to 7, 10, 11, 15, 16, 20

Geometric Sequences:

Geometric Sequences are sequences where there is a common ratio between successive terms.

The explicit formula for a geometric sequence can be found with the following formula:

Ex) Determine the explicit formula for the sequence given by $5,10,20,40,80, \ldots$ Find the value of t_{8}.
$\frac{x_{2} \times 2}{2^{2}} \times 2 \times 2$ * Even though we have 5 terms, we only have 4 jumps.
That's why our exponent is $n-1$. *

General Formula:

$$
\begin{aligned}
t_{n}= & a r^{n-1} \\
= & 5(2)^{n-1} \\
& \uparrow \text { cannot simplify }
\end{aligned}
$$

$$
\begin{aligned}
\text { Find } t_{8}: \quad n=8 \\
\begin{aligned}
t_{8} & =5(2)^{8-1} \\
& =5(2)^{7} \\
& =5(128) \\
& =640
\end{aligned}
\end{aligned}
$$

Ex) How many terms are represented by the sequence $4,20,100, \ldots \quad \ldots, 39062500 \leftarrow$ there should be an extra $0 \ldots$ Can we use a general formula to solve for n ?

Ex) A car is worth $\$ 30000$ when first purchased. Each year the car depreciates 15%. How much will it be worth in 8
r is how
mach remains

Ex) Determine the values of the 3 geometric means between

147 and 352947.
$147 \underset{x_{r}}{2} \underbrace{1}_{x_{r}} \underbrace{\prime-}_{x_{r}}$
352947

Hint: Could you have 2 rvaloes?

We need r.

Ex) Determine the explicit formula for the geometric sequence where $t_{3}=36$ and $t_{10}=78732$.

Steps: © Find r.
(2) Find general For.

Now Try Page 39 \#1, 3 to 8, 10, $12, ~ 23, ~ 26 ~$

Geometric Series:

A Geometric Series is the sum of the terms of a geometric sequence.

Ex) $2,8,32,128, \ldots \leftarrow$ Geometric Sequence? These are the same $2+8+32+128 \leftarrow$ Geometric Series $\left\{\begin{array}{c}\text { but your series is } \\ \text { added }\end{array}\right.$

The Partial Sum of a geometric series can be found by:

$S_{n}=$ sum of terms
$a=$ value of the first term
$r=$ common ratio
$n=$ number of terms considered
$t_{n}=$ value of last term considered
term \#, n
Ex) Find the sum of the first 12 terms for the sequence given by $\underset{\times 4}{1+4}$
$\left.r^{n}-1\right\rangle$
$r-1$
$=\frac{1\left(4^{12}-1\right)}{4-1}$
$=\frac{16777215}{3}$

Ex) Determine the sum of the first 8 terms of the geometric series given below.

$$
5+15+45+\ldots
$$

$$
16400
$$

Ex) Find the sum of each geometric series given below.

$$
\overbrace{3-6+12}^{x-2} \overbrace{-24}^{x-2}+\ldots \quad+49152(-98304)
$$

given tn, not term\#.

$$
\begin{aligned}
S_{n} & =\frac{r t_{n}-a}{r-1} \\
& =\frac{(-2)(-98304)-3}{-2-1} \\
& =\div 3 \text { or } \times \frac{1}{3}
\end{aligned}
$$

*Careful with $t-k$
b) $\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\ldots \quad \ldots+\frac{1}{19683}$

$$
\begin{aligned}
S_{n} & =\frac{r t_{n}-a}{r-1} \\
& =\frac{\left(\frac{1}{3}\right)\left(\frac{1}{19683}\right)-\frac{1}{3}}{\frac{1}{3}-1}
\end{aligned}
$$

* Careful with Fractions \& culculator*

Ex) In a Scrabble tournament there are 256 entries. In round one of the tournament each of the entries are paired up to play the winner of each match then goes on to the second round of play with the losers of each match being eliminated. This process is then repeated in round two and so on until only two players remain for the final match. For this tournament, how many matches will be played and in how many rounds will this take?
Sequence represents \# \& matches each round.

$$
\begin{aligned}
& 1^{1 \text { st }} \text { round: } \frac{256 \text { players }}{2 \text { players }}=128 \text { math es } \\
& 2^{\text {nd }} \text { round: } \frac{12 \text { p pegles }}{2 \text { players }}=64 \text { mathis } \\
& \frac{128}{\uparrow}, \frac{64}{\uparrow}, 32,16,8,4,2,1 \quad 8 \text { rounds } \\
& \begin{array}{l}
1^{\text {st }} \\
\text { round }
\end{array}
\end{aligned}
$$

Infinite Geometric Series:

The sum of an infinite list of numbers (an infinite series) will do one of two things:

- Converge \rightarrow Approach a specific value
- Diverge \rightarrow Approach positive or negative infinity or bounce between 2 or more values

Ex) State whether the following series are convergent or divergent.
a) $-2+2-2+2-2+2-2+\ldots$

Bounces." divergent
b) $8+4+2\left(2+1+\frac{1}{2}+\frac{1}{4}+\ldots \frac{1}{8} \bigcap \frac{1}{16}\right.$

Approaches $0 \therefore$ converges
to 0

An infinite geometric series will converge if $-1<r<1$.
r has to be a decimal.
Proof: $\quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \leftarrow$ sum of a geometric series
If r is between -1 and 1 , r^{n} gets smaller and approaches 0 .

$$
\begin{aligned}
S_{n} & =\frac{a(0-1)}{r-1} \\
& =\frac{a(-1)}{r-1} \\
& =\frac{-a}{r-1} \\
S & =\frac{a}{1-r}
\end{aligned}
$$

Ex) If possible, find the sum of each series given below.
Not given t_{n} or $n .$. infinite geometric.
a) $1+\frac{1}{4}+\frac{1}{16}+\ldots$

$$
\begin{aligned}
S_{\infty} & =\frac{a}{1-r} \quad \begin{array}{r}
\text { r1/4 }
\end{array}=0.25 \therefore \begin{array}{c}
\therefore \text { infinite } \\
\text { Converge }
\end{array} \\
& =\frac{1}{1-1 / 4} \rightarrow \frac{1}{1} \times \frac{4}{3}= \\
=\frac{4}{3} & 5080
\end{aligned}
$$

c) $\frac{5}{3}+\frac{20}{9}+\frac{80}{27}+\ldots$

$$
r=\frac{4}{3}=1 . \overline{3}
$$

Since $r>1$, cannot find S_{∞}
b) $x^{\times \frac{1}{2}} 1 \quad r=\frac{1}{3} \therefore$ converges
b)

$$
\begin{aligned}
& \begin{array}{l}
x+\frac{1}{3} \\
9+3
\end{array}+1+\frac{1}{3}+\ldots \\
& S_{\infty}=\frac{a}{1-r} \\
&=\frac{9}{1-1 / 3} \\
& S_{\infty}=\frac{27}{2}
\end{aligned}
$$

d) $3-\frac{3}{5}+\frac{3}{25}-\ldots \quad r=-\frac{1}{5} \quad \therefore$ converges $x_{x}-\frac{1}{5}$
$S_{\infty}=\frac{a}{1.7 r}=\frac{3}{1-(-1 / 5)}=\frac{5}{2}$

Ex) Express $0 . \overline{35}$ as a fraction.

r is between t and 1
So we can use infinite.

$$
S_{\infty}=\frac{a}{1-r}=\frac{0.35}{1-\frac{1}{100}}=\frac{35}{99}
$$

Ex) Express $2.4 \overline{21}$ as a fraction.
 now

$$
\begin{aligned}
& S_{\infty}=\frac{a}{1-r}=\frac{7}{330} \leftarrow \begin{array}{l}
\text { This represents the series } \\
\text { so now we have to add } \\
2.4 \text { back l in. }
\end{array} \\
& 2.4+\frac{7}{330}=\frac{799}{330}
\end{aligned}
$$

Now Try
Page 63 \#1, 2, 3, 5, 6, 8, 9, 10, 11, 17

