Unit 5 Trigonometry

Review:

SOH

$\sin \theta=\frac{\text { opp }}{\text { hyp }}$
CAM
$\cos \theta=\frac{\text { adj }}{\text { hyp }}$
$\tan \theta=\frac{\text { opp }}{\text { adj }}$

Ex) Determine the value of x for each of the following.

Ex) Determine the value of angle θ in each of the following.

The History of Trigonometry: How high is the sun?

- Humans wanted to determine the height of the sun at given time as it follows its circular path around the earth.
- The study of "circle-ometry" begins.
- $5^{\text {th }}$ century: Indian scholars called the height of the sun the "Jya" in Sanskrit.
- $10^{\text {th }}$ century: Islamic scholars translated "Jya" letter by letter into "Jiba" in Arabic.

- $12^{\text {th }}$ century: European scholars translated jiba into Latin. Jiba was not a proper Arabic word so they thought it was a misspelled version of "jaib" which meant "a cove or bay" in Arabic. They translated this incorrect word into Latin for bay which is "sinus" which we later shortened to Sine!

Therefore, the Sine of the sun refers to its height.

- The horizontal displacement or "overness" was called the "companion length to sine" which was shortened to "cosine".

Therefore, the cosine of the sun refers to its horizontal distance.

- 16 century: George Rheticus wrote about sine and cosine without mentioning circles, he used triangles. Circle-ometry becomes trigonometry, the study of right triangles.

Let's go back to the sun:

Use Pythagorean,

$$
\begin{aligned}
& a^{2}+a^{2}=1^{2} \\
& 2 a^{2}=1 \\
& a^{2}=\frac{1}{2} \\
& a=\sqrt{\frac{1}{2}}=\frac{\sqrt{1}}{\sqrt{2}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{2}
\end{aligned}
$$

overness = cosine
270°

- What is the radius of the circular path? The distance from Earth to the sun...Astronomers called it 1 astronomical unit so we call the radius 1 .

What is height of the sun at $45^{\circ} ? \frac{\sqrt{2}}{2}$
What is the overness of the sun at $45^{\circ} ? \frac{\sqrt{2}}{2}$
Therefore,

$$
\sin _{\uparrow}\left(45^{\circ}\right)=\frac{\sqrt{2}}{2} \quad \cos \left(45^{\circ}\right)=\frac{\sqrt{2}}{2}
$$

"height at 45"

$$
\left.\begin{array}{rl}
100=\frac{\sqrt{3}}{2} & \text { Pythagorean, } \\
& a^{2}+\left(\frac{1}{2}\right)^{2}=12 \\
a^{2}=1-1 / 4
\end{array}\right\}
$$

What is the height of the sun at $60^{\circ}, \sin \left(60^{\circ}\right) ? \frac{\sqrt{3}}{2}$ What is the overness of the sun at $60^{\circ}, \cos \left(60^{\circ}\right) ? \frac{1}{2}$

Pythagorean. $a^{2}+\left(\frac{1}{2}\right)^{2}=1^{2}$
$a=\frac{\sqrt{3}}{2}$

What is the height of the sun at $30^{\circ}, \sin \left(30^{\circ}\right) ? \quad \frac{1}{2}$ What is the overness of the sun at $30^{\circ}, \cos \left(30^{\circ}\right) ? \frac{\sqrt{\xi}}{2}$

$$
\begin{array}{ll}
& * * \text { Summary } * * \\
\sin 30^{\circ}=\frac{1}{2} & \cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
\sin 45^{\circ}=\frac{\sqrt{2}}{2} & \cos 45^{\circ}=\frac{\sqrt{2}}{2} \\
\sin 60^{\circ}=\frac{\sqrt{3}}{2} & \cos 60^{\circ}=\frac{1}{2}
\end{array}
$$

$$
\tan 30^{\circ}=\frac{\sin 30}{\cos 30}
$$

$$
\tan 45^{\circ}=\frac{\sin 45}{\cos 45}
$$

$$
\tan 60^{\circ}=\frac{\sin 60}{\cos 60}
$$

$$
=\sqrt{\frac{\sqrt{3}}{3}}
$$

$$
=\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}
$$

$$
=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}
$$

=1
What $\frac{\frac{3}{3} \text { unut when } \sin \left(135^{\circ}\right) \text { ? }}{3}$
$=\sqrt{3}$

What about when $\sin \left(225^{\circ}\right)$?
What about when $\sin \left(120^{\circ}\right)$?
What about when $\sin \left(330^{\circ}\right) ?$
What about when $\cos \left(135^{\circ}\right)$?
What about when $\cos \left(240^{\circ}\right) ?$

Sketch the following angles.
Tins is called terminal aron.
130° mill
a) 130°
b) -110°
c) 560°

 any between.

Reference Angles: 90° ord -700 mal closer to -40:
\rightarrow We ge around ane and then 200° muse
A reference angle is the angle between the terminal arm and the x-axis. Reference angles are always between 0° and 90°.

Ex) Determine the measure of the three other angles in standard position, $0^{\circ}<\theta<360^{\circ}$, that have the same reference angle as
(1) Pe Areca h ye $=225^{\circ}-180^{\circ}$

Ex) The pendulum arm of a metronome is 10 cm long. For one particular tempo, the setting results in the arm moving back and forth from a start position of 60° to 120°. What horizontal distance does the tip of the arm move in one beat?

IF I take just the Δ on the right...

$$
\sin 30^{\circ}=\frac{g p p}{10 \mathrm{~cm}}
$$

opp $=5 \mathrm{~cm}$

\rightarrow If boll troughs are the sure the tidal doshared is 10 an

Now Try: Workspace Lesson 1

CAST Rule:

Ex) Determine the exact primary trigonometric ratios $(\sin \theta$, $\cos \theta, \tan \theta)$ for each of the following.

Exact means froction/radical.
a) 240°

Reference: 60°

c) 315°
$\sin \left(-210^{\circ}\right)=\frac{1}{2}$
$\cos \left(-210^{\circ}\right)=-\frac{\sqrt{3}}{2}$
$\tan \left(-200^{\circ}\right)=\frac{\sin \left(-210^{\circ}\right)}{\cos \left(-200^{\circ}\right)}$
$=\frac{\frac{1}{2}}{\frac{-\sqrt{2}}{2}}$
$=\frac{1}{2} \times \frac{2}{\sqrt{2}}$
$=-\frac{1}{2 \sqrt{2}} \times \frac{\sqrt{3}}{\sqrt{2}}-\frac{-\sqrt{3}}{3}$

d) 150°

$$
30 f \text { erma : } 45^{\circ}
$$

$$
\begin{aligned}
\sin 315^{\circ}=-\frac{\sqrt{2}}{2} \quad \tan 35^{\circ} & =\frac{\sin 315^{\circ}}{\cos 315} \\
\cos 315^{\circ}=\frac{\sqrt{2}}{2} & \\
& =\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{12}}{2}} \\
& =-1
\end{aligned}
$$

$$
\text { Reference }=30^{\circ}
$$

$\sin 150=\frac{1}{2} \quad \tan 150^{\circ}=-\frac{\sqrt{1}}{3}$
$\cos 150=\frac{\sqrt{5}}{2}$

Ex) The point $(-5,7)$ lies on the terminal arm of angle θ (cos, sin)
Determine the three exact primary trigonometric ratios for

Ex) If $\sin \theta=\frac{3}{7}$ and $\cos \theta$ is negative, determine the exact primary trigonometric ratios for $\cos \theta$ and $\tan \theta$.

Ex) Solve the following for θ.
a) $\sin \theta=\frac{1}{2}, \quad 0^{\circ}<\theta<360^{\circ}$

When is height of the sem $\frac{1}{2}$?

$$
\theta=30^{\circ}, 150^{\circ}
$$

b) $\cos \theta=\frac{-\sqrt{2}}{2}, 0^{\circ}<\theta<360^{\circ}$

When is your overness $\frac{-\sqrt{2}}{2}$?

$$
\frac{R_{6 f}=45^{\circ}}{\theta=135^{\circ} .225^{\circ}}
$$

$$
\begin{aligned}
& \text { c) } \tan \theta=-\sqrt{3}, \quad 0^{\circ}<\theta<360^{\circ} \\
& \tan \theta=-\frac{\sqrt{3}}{1}=\frac{\sin }{\cos }=\left\{\begin{array}{c}
\tan (\tan \theta)=\tan ^{-1}(-\sqrt{3}) \\
\theta=-60^{\circ} \\
=300^{\circ}, 120^{\circ} \\
\frac{1}{2} \\
360-60=800^{\circ}
\end{array}\right.
\end{aligned}
$$

Now Try: Workspace
Lesson 2

The Sine Law:

SOH CAH TOA only works on triangles that have a 90° angle.
For triangles that are not right angle triangles we need a different way to solve for missing sides or angles. The Sine Law is one of these ways.

Angles in capitals Side length are
lower ace.

Ex) Find the length of side a to the nearest tenth.

Ex) Find the measure of angle R to the nearest degree.

Ex) Determine the length of side b to the nearest tenth.

$$
\begin{aligned}
& \frac{b}{\sin B}=\frac{c}{\sin C} \\
& \frac{b}{\sin 8 B^{\circ}}=\frac{18 k_{50}}{\sin 31^{\circ}} \\
& b=3.5 \mathrm{~km}
\end{aligned}
$$

All arles add do 180 : $180^{\circ}-64^{\circ}-88^{\circ}=31^{\circ}$

Ex) In $\triangle R S T, \angle S=82.6^{\circ}, r=53 \mathrm{~m}$, and $\angle T=25.9^{\circ}$, Solve the triangle (find all missing sides and all missing angles).
Round each side to the nearest metre.

(a)

$$
\begin{aligned}
& \frac{t}{\sin T}=\frac{r}{\sin R} \\
& \frac{t}{\sin 85 T^{\circ}}=\frac{58 n}{\sin \pi .5} \\
& t=29 m
\end{aligned}
$$

$$
\text { (5) } \frac{8}{\sin S}=\frac{r}{\sin x}
$$

$$
\frac{s}{\sin 8.6}=\frac{53 \mathrm{~m}}{\sin 7.50}
$$

$\mathrm{s}=55 \mathrm{~m}$

Ex) Find the area of triangle $X Y Z$ to the nearest unit.
\rightarrow Want y.
$A=\frac{b h}{2}$

Ex) In $\triangle A B C, \angle A=30^{\circ}, a=24 \mathrm{~cm}$, and $b=42 \mathrm{~cm}$, Solve the triangle (find all missing sides and all missing angles).
Round all answers to the nearest unit.

Now Try	
Page 108 \#1 to 6, 8, 10	
	11, 12, 21, 24

The Cosine Law:

Again, like the Sine Law, the Cosine Law can be applied to all triangles.

Ex) Find side b to the nearest cm .

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& b^{2}=54^{2}+72^{2}-2(54)(72) \cos 101^{\circ}
\end{aligned}
$$

$$
b^{2}=2916+5184-\underbrace{-7796(-0.19)}
$$

$b^{2}=2916+5184+1477.44$
$\sqrt{b^{2}}=\sqrt{9571.44}$
$b=98 \mathrm{am}$

Ex) In $\triangle D E F, d=3.7 \mathrm{~m}, e=3.2 \mathrm{~m}$, and $f=1.2 \mathrm{~m}$. Find $\angle D$ to the nearest degree.

$$
\begin{aligned}
& \cos D^{\sqrt{2}}=\frac{1.2^{2}+3.2^{2}-3.7^{2}}{2(1.2)(3.2)} \\
& \cos D=\frac{1.44+1024-1369}{7.68} \\
& \cos D=\frac{-201}{768} \\
& \cos D=-0.26 . \\
& D=\cos ^{-1}(0.26 . .) \\
& =105^{\circ}
\end{aligned}
$$

Ex) In $\triangle A B C, a=11, b=5$, and $\angle C=20^{\circ}$. Solve the triangle.

$$
c^{2}=a^{2}+b^{2}-2 a b c a C
$$

$$
c^{2}=11^{2}+5^{2}-2(11 \times 5) \cos 20^{\circ}
$$

$$
c^{2}=121+25-110(0.93)
$$

$$
\sqrt{c^{2}}=\sqrt{43.7}
$$

$$
c=6.6
$$

$\frac{a}{5 m i n}=\frac{c}{5 x C}$
$\frac{11}{\sin x}+\frac{6}{\sin 20}$
$\frac{6 \operatorname{don} \sin A}{b .6} \frac{11 \sin 92}{6.6}$
$\sin A=\frac{11 \sin 20}{6.6}$
$\sin (\sin A)=80^{-9}\left(\frac{118, n 29}{2.6}\right)$
$A=34.7^{\circ}$

Ex) A surveyor need to find the length of a swampy area. He sets up a transit at a point A and measures the distance from it to one end of the swamp as 692.6 m and the distance to the other end as 468.2 m . If the angle of sight between these two measurements is 78.6°, determine the length of the swamp.

Now Try
Page 119 \#1 to 6, 10,
15, 24, 28

