Unit 5 Trigonometry

Review:

$$\sin \theta = \frac{\operatorname{opp}}{\operatorname{hyp}}$$
 $\cos \theta = \frac{\operatorname{adj}}{\operatorname{hyp}}$ $\tan \theta = \frac{\operatorname{opp}}{\operatorname{adj}}$

Ex) Determine the value of *x* for each of the following.

Ex) Determine the value of angle θ in each of the following.

The History of Trigonometry: How high is the sun?

- Humans wanted to determine the height of the sun at given time as it follows its circular path around the earth.
- The study of "circle-ometry" begins.
- 5th century: Indian scholars called the height of the sun the "Jya" in Sanskrit.
- 10th century: Islamic scholars translated "Jya" letter by letter into "Jiba" in Arabic.

• 12th century: European scholars translated jiba into Latin. Jiba was not a proper Arabic word so they thought it was a misspelled version of "jaib" which meant "a cove or bay" in Arabic. They translated this incorrect word into Latin for bay which is "sinus" which we later shortened to Sine!

Therefore, the Sine of the sun refers to its height.

• The horizontal displacement or "overness" was called the "companion length to sine" which was shortened to "**cosine**".

Therefore, the cosine of the sun refers to its horizontal distance.

• 16 century: George Rheticus wrote about sine and cosine without mentioning circles, he used triangles. Circle-ometry becomes trigonometry, the study of right triangles.

Let's go back to the sun:

• What is the radius of the circular path? The distance from Earth to the sun...Astronomers called it 1 astronomical unit so we call the radius 1.

What is the height of the sun at 30° , $\sin(30^{\circ})$? What is the overness of the sun at 30° , $\cos(30^{\circ})$?

Summary

$$\sin 30^\circ = \frac{1}{2}$$
 $\cos 30^\circ = \sqrt{3}$
 $\sin 45^\circ = \sqrt{2}$
 $\cos 45^\circ = \sqrt{2}$
 $\cos 45^\circ = \sqrt{2}$
 $\sin 60^\circ = \sqrt{3}$
 $\cos 60^\circ = \frac{1}{2}$

What about when $\cos(135^{\circ})$?

What about when $\cos(240^{\circ})$?

A reference angle is the angle between the terminal arm and the *x*-axis. Reference angles are always between 0° and 90° .

Ex) Determine the measure of the three other angles in standard position, $0^{\circ} < \theta < 360^{\circ}$, that have the same reference angle as **()** Reference Age=215°-180°

Ex) The pendulum arm of a metronome is 10 cm long. For one particular tempo, the setting results in the arm moving back and forth from a start position of 60° to 120° . What horizontal distance does the tip of the arm move in one beat?

IF I take just the D on the right...

-> If both tranges are the same the taken distance is loan.

Now Try: Workspace Lesson 1

Ex) Determine the exact primary trigonometric ratios $(\sin\theta, \cos\theta, \tan\theta)$ for each of the following.

Exact means fraction/radical. 240° Reference : 60° a) $\frac{1}{2} \frac{1}{2} \frac{1}$ $5'n240^{\circ} = \frac{\sqrt{5}}{2}$ $\cos 240^{\circ} = -\frac{1}{2}$ /86' ← 270° 3 x X b) **O**210° Kom Reference = 30° tan(-210)= <u>Sin(-210)</u> Sin(-210'): 1 - **Hot**4 5-216 Co3(-210.) = - <u>13</u> c) 315° ×Z

Jeferena:45°

315

d) 150°

Reference = 30° Sin 150 = $\frac{1}{2}$ $tan 150' = -\sqrt{3}$ cos 150 = $\sqrt{3}$ Ex) The point (-5, 7) lies on the terminal arm of angle θ

Determine the three exact primary trigonometric ratios for

Ex) If $\sin \theta = \frac{3}{7}$ and $\cos \theta$ is negative, determine the exact primary trigonometric ratios for $\cos \theta$ and $\tan \theta$.

Ex) Solve the following for θ .

a)
$$\sin \theta = \frac{1}{2}$$
, $0^{\circ} < \theta < 360^{\circ}$
When is height of its sum $\frac{1}{2}$?
 $\theta = 30^{\circ}$, 150°
b) $\cos \theta = \frac{-\sqrt{2}}{2}$, $0^{\circ} < \theta < 360^{\circ}$
When is your overness $-\sqrt{2}$?
 $\theta = 195^{\circ} \cdot 225^{\circ}$
c) $\tan \theta = -\sqrt{3}$, $0^{\circ} < \theta < 360^{\circ}$
 $\tan \theta = -\sqrt{3}$, $0^{\circ} < \theta < 360^{\circ}$
 $\tan \theta = -\sqrt{3}$, $0^{\circ} < \theta < 360^{\circ}$
 $\tan \theta = -60^{\circ}$
 $\theta = -60^{\circ}$
 $\sin \theta = -$

Now Try: Workspace Lesson 2

The Sine Law:

SOH CAH TOA only works on triangles that have a 90° angle. For triangles that are not right angle triangles we need a different way to solve for missing sides or angles. The Sine Law is one of these ways.

Ex) Find the length of side *a* to the nearest tenth.

Ex) Find the measure of angle *R* to the nearest degree.

Ex) Determine the length of side *b* to the nearest tenth.

Ex) Find the area of triangle *XYZ* to the nearest unit.

Ex) In $\triangle ABC$, $\angle A = 30^{\circ}$, a = 24 cm, and b = 42 cm, Solve the triangle (find all missing sides and all missing angles). Round all answers to the nearest unit.

Now Try	
Page 108	#1 to 6, 8, 10
	11, 12, 21, 24

The Cosine Law:

Again, like the Sine Law, the Cosine Law can be applied to all triangles.

Ex) Find side *b* to the nearest cm.

Ex) In $\triangle DEF$, d = 3.7 m, e = 3.2 m, and f = 1.2 m. Find $\angle D$ to the nearest degree.

$\cos 5 = 1.2^{2} + 3.2^{2} - 3.7^{2}$
2(1.273.2)
(DsD = 1.44+10 24-15 69
7.68
$cosD = -\frac{2}{7} \frac{01}{68}$
05D=-0.26.
D= cos'(0.24)
- 105°

Ex) In $\triangle ABC$, a = 11, b = 5, and $\angle C = 20^{\circ}$. Solve the triangle. c2 = a + b2 - 2abcas 20 ۱۱ JC2 . 43.7 C=6.6 180-20-34 7 = 125.3 inA= Ilsm SmA = <u>lisin20</u>

Ex) A surveyor need to find the length of a swampy area. He sets up a transit at a point *A* and measures the distance from it to one end of the swamp as 692.6 m and the distance to the other end as 468.2 m. If the angle of sight between these two measurements is 78.6° , determine the length of the swamp.

Now Try Page 119 #1 to 6, 10, 15, 24, 28