Unit 1 Quadratic Functions \& Equations

Graphing Quadratics Part I:

What is a Quadratic?

Ex) $y=x^{2}+3$

$$
y=(x+4)^{2}-7
$$

$$
\begin{aligned}
y & =(x+3)(x-7) \\
& =x^{2}-7 x+3 x-21
\end{aligned}
$$

Graph of $y=x^{2}$:
m
The most basic quadratic function is given by $y=x^{2}$.
Create a table of values for $y=x^{2}$ and then graph it on the grid provided.

Graphing Quadratics of the form $y=x^{2}+q$:

Below is the graph of $y=x^{2}$

Sketch the graph of
$y=x^{2}+3$

Sketch the graph of $y=x^{2} \sim 7$

Rule: When we odd a covenant to x^{2}, our graph surfs up by that mary. When we subtract a constant. the graph shifts down by thess many.

Function Notation:
Our original graph $y=f(x)$ Our new gape: $y=f(x)+q^{\downarrow}$
when $q>0$, shifts up $q<0$, shift dan

Graphing Quadratics of the form $y=(x-p)^{2}$:
Below is the graph of $y=x^{2}$

Sketch the graph of
$y=(x+\underbrace{2}$

Sketch the graph of
$y=(x-8)^{2}$
\sim

Rule: When axe add a constant dreaty to x, our graph shifisloft When we subtract a constant clirecelly from x, our graph shuts right.

In general if $y=(x+p)^{2}+q$ then
$p>0$ the graph moves \qquad lift
$p<0$ the graph moves \qquad
$q>0$ the graph moves \qquad
$q<0$ the graph moves \qquad down
The vertex of the parabola is given by $\left(-\frac{p}{x}, \frac{q}{y}\right.$.
Ex) Sketch the following parabolas. Then answer the following.
a) $y=(x+4)^{2}-5$
b) $y=(x-7)^{2}+2$

Coordinates of Vertex: $(-4,-5)$
Axis of Symmetry: $x=-4$

Coordinates of Vertex:
$(7,2)$
Axis of Symmetry:

$$
x=7
$$

$$
\begin{array}{lr}
\text { Domain: } & \text { Range: } y \geq 2 \\
x \text { xintercept(s): } & y \text {-intercept: } x=0 \\
\text { Nov } & \begin{aligned}
y & =(x-7)^{2}+2 \\
& =(-7)^{2}+2 \\
& =51 \quad(0,5)
\end{aligned}
\end{array}
$$

Ex) Determine the equation of the following parabolas.
a)

$y=(x+5)^{2}-9$
b)

$$
y=(x-6)^{2}-3
$$

Ex) Describe what happens to the point $(-4,16)$ on the graph of $y=x^{2}$ when the graph of $y=x^{2}$ is changed into the graph of $y=(x+7)^{2}+18$.
$\rightarrow 76 \mathrm{ft}$
$\rightarrow 18 \mathrm{up}$

Now Try
Worksheet

Graphing Quadratics Part II:

Graphing Quadratics of the form $y=a x^{2}$:
Below is the graph of $y=x^{2}$

Sketch the graph of
$y=3 x^{2}$

Sketch the graph of
$y=\underset{\sim}{\theta} \boldsymbol{\theta} x^{2}$

Old \rightarrow New

Old \rightarrow New
$(1, n \rightarrow(1,-3)$
$(2,4) \rightarrow(2,-\infty)$

Below is the graph of $y=x^{2}$

Sketch the graph of $y=1 / 2 x^{x^{2}} \quad 0.5 x^{2}$ 多

$$
(0.0) \rightarrow(0.0)
$$

$(1,1) \rightarrow(1,0.5)$
$(2,4) \rightarrow(2,2)$.
$(3,9) \rightarrow(3,45)$
Sketch the graph of $y=-1 / 2 x^{2}$

Rule:
\rightarrow When we malt x^{3} by a
rodent, ar original y values gt multiplied by that comstiont to gore our new y whine
\rightarrow whin corcluant >1, graph becomes slap.
\rightarrow " " <1, graph amprepeo(fratio)
t - influent mans rifely.

Function Notation:
Original: $y=f(x)$
New: $y=a f(x)$ where a is a
constant i
a tolls us pivetch

In general if $y=q(x-p)^{2}+q$ then

(p, q) gives Vertex if $a>{ }_{0}^{+}$then \qquad open up if $a<\overline{0}$ then \qquad a also determines \qquad Stretch fader

Ex) Without using your calculator, graph the following quadratics and determine its characteristics.
a) $y=2 x^{2}-5$

$2(1)^{2}-5=-3$ $2(2)^{2}-5=3$
$(3,9) \rightarrow(3)$
b) $y=-1 / 3(x-4)^{2}+2$

Coordinates of the Vertex:

$$
(0,-5)
$$

Equation of the axis of Symmetry:

$$
x=0
$$

Domain \& Range:
$D: x \in \mathbb{R} R:\{y \mid y z-5, y \in \mathbb{R}\}$
Minimum r Maximum Value:

$$
(0,-5)
$$

Coordinates of the Vertex:

$$
(4,2)
$$

Equation of the axis of Symmetry:

$$
x=4
$$

Domain \& Range:
$D:\{x \mid x \in R\} \quad R:\{y \mid y \leq 2, y \in R\}$
Minimum or Maximum Value:

$$
(4,2)
$$

c) $y=-3(x+7)^{2}+8$

d) $y=2 / 5(x-2)^{2}$

Coordinates of the Vertex:

Equation of the axis of Symmetry:

Domain \& Range:

Minimum or Maximum Value:

Coordinates of the Vertex:

Equation of the axis of Symmetry:

Domain \& Range:

Minimum or Maximum Value:

Ex) Determine the equation for the parabola with its vertex at $(-1,4)$ that goes through the point $(-2,2)$.

St up a general ian: $y=a(x+1)^{2}+4$
Use known pant to solve: (-2.2) ?

$$
\begin{aligned}
& 2=a(-2+1)^{2}+4 \\
& 2=a(-1)^{2}+4 \\
& 2=a(1)+4 \quad y=-2(x+1)^{2}+4 \\
& 2=a+4 \\
& 2-4=a+4-4 \\
& 1-2=a
\end{aligned}
$$

Ex) Determine the equation of the parabola that goes through the point $(14,22)$ and has its vertex at $(11,-14)$.

$$
y=4(x-11)^{2}-14
$$

Ex) Determine the equation of the parabola that has an axis of symmetry given by $x=-17$, a range of $y \in R$ where $y \leq 5$, and goes through the point $(-24,-16)$. Vertex: $(-17,5)$

$$
y=a(x+17)^{2}+5
$$

Sub
$(-24,16)$

$$
\text { 16): } \begin{aligned}
-16 & =a(-24+17)^{2}+5 \\
-16 & =a(-7)^{2}+5 \\
-16 & =a(49)+5 \\
-16-5 & =a(49)
\end{aligned}
$$

Ex) Determine the equation of the parabola that passes through $(8,5)$ and whose x-intercepts are -2 and 6 .
$y=a(x-2)^{2}+q$ Not halpfil yet $\therefore 2$ unknours

$$
\begin{aligned}
& \operatorname{Sub}(8,5): 5=a(8-2)^{2}+a \\
& 5=a(36)+a \\
& 5=36 a+a \\
& y=\frac{1}{4}(x-2)^{2}-4
\end{aligned} \quad\left\{\begin{array}{l}
\text { Sub }(-2.0): \\
0=a(-2-2)^{2}+a \\
0=a(16)+a \\
0=101+ \\
0=16 a+a
\end{array}\right.
$$

We have 2 eases with 2 unknowns:: Use Substitution \& or elimindion

Ex) Describe the transformation required to turn the graph of $y=x^{2}$ into the graph of $y=-6(x+7)^{2}-10$.

Ex) A rocket is fired into the air. Its height is given by the equation $h(t)=-4.9(t-5)^{2}+124$, where h is the height in meters and t is the time in seconds.
a) Sketch the graph of this equation.
b) What is the maximum height reached by the rocket? and when does it reach its maximum height?
c) What was the height of the rocket when it was fired?

Ex) The stainless steel Gateway Arch in St. Louis, Missouri, has the shape of a catenary which is a curve that approximates a parabola. If the curve is graphed on a grid it can be modeled by the equation $h(d)=-0.02 d^{2}+192$, where d is the horizontal distance frym the cent of the arch and h is the height of the arch.
a) Sketch a graph of the shape of the arch.

b) Find the height of the arch

c) Find the approximate width of the arch at its base.

$$
98+98=196
$$

d) Find the approximate height of the arch at a horizontal distance 15 m form one end.

$$
\begin{aligned}
h & =-0.02 d^{2}+192 \\
& =-0.02(83)^{2}+192 \\
& =-0.02(6889)+192 \\
& =54.22-m
\end{aligned}
$$

Completing the Square Part I:

When quadratics are written in the form

$$
y=a(x-p)^{2}+q
$$

it is easy to graph them, this is known as Standard Form.
Quadratics can also be written in General Form

Standard Form: $\quad y=a(x-p)^{2}+q$
General Form: $\quad y=A x^{2}+B x+C$

In order to graph parabolas in general form we must first change it to standard form, this is done using a process called completing the square.

Factor the following.
$x^{2}+6 x+9$
$x^{2}-\sqrt{10} x+25$
$x^{2}+22 x+121$
$(x+3)(x+3)$

$$
(x-5)(x-5) \quad(x+11)(x+11)
$$

What do you notice about the coefficient of the middle term and the constant? For all perfect squares if you take half the coefficient on the middle tom and then square (mut by itself) it, we get air ardent.

Ex) Find the value of c that makes each of the following a perfect square trinomial.
a) $x^{2}+14 x+c$
b)

$$
14 \div 2=7
$$

$$
x^{2}+H x+49
$$

$$
7^{2}=49
$$

$$
(x+7)^{2}
$$

$$
\begin{array}{ll}
x^{2}-20 x+c \\
x^{2}-20 x+100 \\
(x-10)^{2} & (-10)^{2}=100
\end{array}
$$

c) $x^{2}+\boldsymbol{7} x+c$
d) $a^{2}-5 / 3 a+c$
$7 \div 2=\frac{7}{2}$
$x^{2}+7 x+\frac{49}{4}$

$$
a^{2}-5 / 3 a+25 / 36
$$

$$
\left(\frac{7}{3}\right)^{2}=\left(\frac{7}{2}\right)\left(\frac{7}{2}\right)=\frac{49}{4} \quad(x+7 / 2)^{2}
$$

$$
\begin{aligned}
& a^{2}-5 / 3 a+25 / 36 \\
& \left(a^{-5 / 6}\right)^{2}
\end{aligned}
$$

Ex) Convert the following to Standard Form.
a) $y=x^{2}+6 x$
b) $y=x^{2}-8 x$
\rightarrow Everything macs right copt y
\rightarrow wo want a braced

$$
\begin{aligned}
y & =\underbrace{x^{2}+6 x+9}-9 \\
& =(x+3)^{2}-9
\end{aligned}
$$

$$
(x-4)^{2}-16
$$

3 heft 9 dom en
4 right 16 down
c) $y=x^{2}+10 x+30$
d) $y=x^{2}+x-2$

$$
\begin{aligned}
& y=\underbrace{x^{2}+10 x+25}-25+30 \\
& y=(x+5)^{2}+5
\end{aligned}
$$

$5^{\text {of }} 5 u p$
e)

$$
7 \div 2=\frac{7}{2}
$$

$$
\left(\frac{7}{2}\right)^{2}=\frac{49}{4}
$$

$$
\begin{aligned}
& y=x^{2}+7 x+5 \\
& y=\underbrace{x^{2}+7 x+\frac{49}{4}}-\frac{4}{2} \\
& y=\left(x+\frac{7}{2}\right)^{2}-\frac{29}{4}
\end{aligned}
$$

f)

$$
\begin{aligned}
& x^{2}-y+12 x-11=0 \\
& x^{2}+12 x-11=y \\
& y=x^{2}+12 x-11 \\
& y=\underbrace{2}+12 x+36-36-11 \\
& y=(x+6)^{2}-47
\end{aligned}
$$

g)

$$
\begin{array}{ll}
-3 x^{2}+3 y+7 x-2=0 \\
\frac{B y}{3}=\frac{3 x^{2}}{3}-\frac{7 x}{3}+\frac{2}{3} \\
y=x^{2}-\frac{7}{3} x+\frac{2}{3} & \left(-\frac{7}{3}\right)\left(\frac{1}{2}\right)=\frac{-7}{6} \\
y=\underbrace{x^{2}-\frac{7}{3} x+\frac{49}{36}}-\frac{49}{36}+\frac{2}{3} & \left(\frac{-7}{6}\right)^{2}=\frac{49}{36}
\end{array}
$$

$$
y=\left(x-\frac{7}{6}\right)^{2}-\frac{25}{36}
$$

Completing the Square Part II:
So far we have only completed the square when the coefficient in front of the x^{2} term is 1 . If this value is something other than 1 we must first factor it out from the x^{2} and the x terms.

Ex) Express the following in standard form. $y=a(x+p)^{2}+a$
a) $y=3 x^{2}+18 x+32$
$=3\left(x^{2}+6 x+\frac{32}{8}\right]$ Factor 3 out δ each tern
$=3\left[x^{2}+6 x+9-9+\frac{32}{3}\right]$ find constant to complete
$=3\left[(x+3)^{2}-9+\frac{32}{3}\right]$ Put in brackets.
b)

$$
\begin{array}{rl}
y & =-2 x^{2}+20 x+17 \\
& =-2\left[x^{2}-10 x-\frac{17}{2}\right]
\end{array}=-2\left[x^{2}-10 x+25-25-\frac{17}{2}\right] \quad=-2\left[(x-5)^{2}-\frac{67}{2}\right] \quad \underbrace{}_{y}=-2(x-5)^{2}+67]=-2(x-5)^{2}+67]
$$

c) $\underbrace{y=-x^{2}+8 x-6}$

Ans: $y=-2(x-5)^{2}+67$
Ans: $y=-(x-4)^{2}+10$

$$
\begin{aligned}
y & =-\left[x^{2}-8 x+6\right] \\
& =-\left[x^{2}-8 x+16-16+6\right] \\
& =-\left[(x-4)^{2}-10\right] \\
& =-(x-4)^{2}+10
\end{aligned}
$$

$$
\begin{aligned}
& \text { d) } \\
& y=5 x^{2}+3 x-12 \\
& =5\left[x^{2}+\frac{3}{5} x-\frac{12}{5}\right] \\
& =5[x^{2}+\frac{3}{5} x+\frac{9}{100}-\underbrace{\frac{9}{100}-\frac{12}{5}}] \\
& \frac{3}{5} \times \frac{1}{2}=\frac{3}{10} \\
& =5\left[\left(x+\frac{3}{10}\right)^{2}-\frac{249}{100}\right] \\
& \left(\frac{3}{10}\right)^{2}=\frac{9}{100} \\
& =5\left(x+\frac{3}{10}\right)^{2}-\frac{249}{20} \\
& 5\left(\frac{-249}{100}\right)=\frac{-249}{20} \\
& \text { e) } y=2 / 3 x^{2}-1 / 5 x+4 / 7 \\
& =\frac{2}{3}\left[x^{2}-\frac{3}{10} x+\frac{6}{7}\right] \\
& =\frac{2}{3}\left[x^{2}-\frac{2}{10}+\frac{9}{400}-\frac{9}{400}+\frac{6}{7}\right] \\
& =\frac{2}{3}\left[\left(x-\frac{3}{40}\right)^{2}-\frac{9}{400}+\frac{6}{7}\right] \\
& =\frac{2}{3}\left[\left(x-\frac{3}{20}\right)^{2}+\frac{23307}{2000}\right] \\
& =\frac{2}{3}\left(x-\frac{3}{20}\right)^{2}+\frac{77}{1400}
\end{aligned}
$$

Maximum \& Minimum Problems:
Maximum and minimum word problems are ones that involve a quadratic equation and require us to find either a maximum or minimum situation.

Steps for Solving:

- Create a quadratic equation that describes the quality that you are finding the maximum or minimum of.
- Express your equation from the above step in standard form (complete the square).
- Determine the location of the vertex from the changed equation. This will tell you the maximum or minimum value as well as when it happens.

Ex) Find two numbers whose difference is 6 and whose product is a minimum.

$$
\begin{aligned}
& 1^{s t} \#=x \\
& 2^{n t} \#=y
\end{aligned}
$$

Ex) A farmer wants to make a corral along a river. If he has 84 meters of fencing and if the river will act as one side of the corral, to what dimensions should the corral be built so the area contained within is a maximum?

x man

Area

$$
\begin{aligned}
\text { Max Area } & =\text { Lx W } \\
& =x y \\
& =x(84-2 x) \\
& =84 x-2 x^{2} \\
& =-2 x^{2}+84 x \\
& =-2\left[x^{2}-42 x+441-441\right] \\
& =-2\left[(x-21)^{2}-4411\right]
\end{aligned}
$$

Ex) 3 pens are to be created as shown below. If 280 m of $\left.=-2(x-21)^{2}+8\right)$ fencing is available to create the pens, to what dimensions should they be built so that the area is a maximum?

Ex) A hotel books comedians for a festival every year. Currently they charge $\$ 28$ per ticket and at this price sell all 500 tickets. The hotel is thinking of raising the ticket price. If they know that for every $\$ 4$ increase in the price of the ticket 20 fewer people will attend, what price should be charged per ticket to create a maximum profit?

$$
\begin{aligned}
\text { Profit } & =(\text { Cost }) \text { \#tickets sold }) \\
& =(28+4 x)(500-20 x) \\
& =14000-560 x+2000 x-80 x^{2} \\
& =-80 x^{2}+1440 x+14000 \\
& =-80\left[x^{2}-18 x-175\right] \\
& =-80\left[x^{2}-18 x+81-81-175\right] \\
& =-80\left[(x-9)^{2}-256\right] \\
& =-80(x-9)^{2}+20480
\end{aligned}
$$

Vertex:

value $\max _{\text {Po fit }}^{x}$
\# Trice increases= 9

$$
\begin{aligned}
\text { Cost } & =28+4(9) \\
& =64 \\
\text { \#s odd } & =500-20(9) \\
& =320
\end{aligned}
$$

Now Try
Page 195 \#18, 19, 20, 21
22, 23, 24

Quadratic Functions vs. Quadratic Equations

Quadratic Functions
Are expressions relating two variables together.
Can be represented by
a graph.
Ex) $y=x^{2}+6 x-3$
Ex) $x^{2}+5 x=-6$

Solving Quadratic Equations by Graphing:

- Bring all terms to one side of the equation (let it $=0$).
- Graph the related function.
- Find the x-intercepts.

Ex) Solve $2 x^{2}+20 x=-42 \longleftarrow$

$$
\underbrace{2 x^{2}+20 x+42}_{Y_{1}}=0
$$

$\rightarrow x$-interacts: Zoa Trans Zero

$$
\begin{aligned}
& x=-7 \\
& x=-3 \\
& 2(-3)^{2}+20(-3)=-42 \\
& 2(9)+20(-3)=-42
\end{aligned}
$$

Possible Outcomes when solving quadratic equations: $-42=-42$

$\left.$| 2 Real Roots |
| :---: |
| $x^{2}-8 x+9=0$ |
| 2 -intercepts | | 1 Real Root |
| :--- |
| $x^{2}-8 x+16=0$ | \right\rvert\, | No Real Roots |
| :---: |
| $x^{2}-8 x+20=0$ |

Ex) Solve the following by graphing a related function on your calculator. Round your answers to the nearest hundredth if necessary.
a) $x^{2}+x=6$
b)

$$
\underbrace{x^{2}+x-6}_{y_{1}}=0
$$

$$
x=-3
$$

$$
x=2
$$

$$
\begin{aligned}
& 2 x^{2}=3 x+34 \\
& 0=\underbrace{-2 x^{2}+3 x+34}_{y_{1}} \\
& \begin{array}{l}
x=-3.44 \\
x=4.94
\end{array}
\end{aligned}
$$

c) $x^{2}+10 x+25=18$
d) $10-2 x^{2}=-8 x+18$

$$
\begin{aligned}
& x=-9.24 \\
& x=-0.76
\end{aligned}
$$

e) $x^{2}+19=-8 x$
f) $0.1(m+3)^{2}=1.6$

No interapts:-

$$
0.1(m+3)^{2}-1.6=0
$$

Ex) The hypotenuse of a right triangle measures 10 cm . One leg of the triangle is 2 cm longer than the other. Find the lengths of the legs for the triangle.

Pythagorean

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& a^{2}+b^{2}=10^{2} \\
& x^{2}+(x+2)^{2}=100 \\
& x^{2}+x^{2}+4 x+4=100 \\
& \underbrace{2 x^{2}+4 x-96}=0
\end{aligned}
$$

Ex) The function $h(d)=-0.025 d^{2}+d$ models the behavior of a soccer ball when it is kicked. h represents the height of the ball in metres and d represents the horizontal distance the ball has traveled in metres. Determine the horizontal distance the ball will travel when it hits the ground.

$$
d=40 \mathrm{~m}
$$

$$
\begin{aligned}
& \text { Now Try } \\
& \text { Page } 215 \# 3,4,5, ~ 6, ~ 8,10 \\
& 13,14,15,16,17
\end{aligned}
$$

Solving Quadratic Equations by Factoring:

$$
\begin{aligned}
& \text { If } a b=0 \text { then } \\
& a=0 \text { or } b=0
\end{aligned} \quad \begin{gathered}
x^{2}-16=0 \\
(x+4)(x-4)=0
\end{gathered}
$$

Steps for solving

- Bring all terms to one side of the equations (let it $=0$).
- Factor the equation.
- Let each factor $=0$ and solve.

Ex) Solve the following by factoring.
a) $x^{2}+12 x=-35$
(b) $3 x^{2}-13 x=10$

$$
\begin{aligned}
& \text { d) } 2 x^{2}+3=5 x+1 \\
& 2 x^{2}-5 x^{\top} 2=0 \quad 2 x-1 \\
& \begin{array}{l}
(2 x-1)(x-2)=0 \quad x \\
2 x-1=0 \quad x-2=0 \quad-2 x^{2} \\
\hline 04 x \\
\hline
\end{array} \\
& \begin{array}{l}
(2 x-1)(x-2)=0 \quad x \\
2 x-1=0 \quad x-2=0 \quad-2 x^{2} \\
\hline 04 x \\
\hline
\end{array} \\
& \frac{2 x}{x}=\frac{1}{2} \quad x=2 \\
& \text { And -5 }
\end{aligned}
$$

Difference

$$
\begin{aligned}
& (x-5)(x+5)=\text { sa lues } \\
& x-5=0 \quad x+5=0 \\
& x=5 \quad x=-5
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } 3 x^{2}+5 x=0 \\
& (x)(3 x+5)=0 \\
& x=0 \quad 3 x+5=0 \\
& \frac{3 x x}{3}=-\frac{5}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { g) } x^{2}+4 x=21 \\
& x^{2}+4 x-21=0 \\
& (x+7)(x-3)=0 \\
& x+7=0 \quad x-3=0 \\
& x=-7 \quad x=3
\end{aligned}
$$

i) $x^{2}+10 x+24=0$

$$
\begin{array}{ll}
(x+6)(x+4)=0 \\
x+6=0 & x+4=0 \\
x=-6 & x=-4
\end{array}
$$

k) $6 x^{2}-5 x+2=7+2 x$

$$
8^{0^{+} C} \begin{aligned}
& 6 x^{2}-7 x-5=0 \\
& (3 x-5)(2 x+1)=0 \\
& 3 x-5=0 \\
& x=\frac{2 x+1}{}=0 \\
& x=-\frac{1}{2}
\end{aligned}
$$

$$
\text { f) } \frac{2}{x+1}+\frac{5}{x-1}=-6
$$

$$
\begin{aligned}
& \frac{2(x+1)(x-1)}{(x+1)}+\frac{5(x+1)(x-1)}{(x+1)}=-6(x+1)(x-1 \\
& 2(x-1)+5(x+1)=-6(x+1)(x-1) \\
& 2 x-2+5 x+5=-6\left(x^{2}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { h) } 4 x^{2}-5 x-21=0 \\
& (4 x+7)(x-3)=0 \\
& 4 x+7=0 \quad x-3=0 \\
& x=\frac{-7}{4} \quad x^{3}
\end{aligned}
$$

j) $x^{2}+10=-25$

1) $a^{2}+22=-13 a$

$$
\begin{aligned}
& a^{2}+13 a+22=0 \\
& (a+11)(a+2)=0 \\
& a+11=0 \quad a+2=0 \\
& a=-11 \quad a=-2
\end{aligned}
$$

$$
\begin{aligned}
& \text { m) } x^{2}-64=0 \\
& (x+8)(x-8)=0 \\
& x+8=0 \quad x-8=0 \\
& x=-8 \quad x=8
\end{aligned}
$$

$$
\text { 0) } \begin{aligned}
& 5 a^{2}=52 a-20 \\
& 5 a^{2}-52 a+20=0 \\
& (5 a-2)(a-10)=0 \\
& 5 a-2=0 \quad a-10=0 \\
& a=\frac{2}{5} \quad a=10
\end{aligned}
$$

$$
\begin{aligned}
& \text { q) } x^{2}-15=-11 \\
& x^{2}-4=0 \\
& (x+2)(x-2)=0 \\
& x+2=0 \quad x-2=0 \\
& x=-2 \quad x=2
\end{aligned}
$$

$$
\begin{gathered}
\text { s) } \begin{array}{c}
4 x^{2}-20 x+25=0 \\
(2 x-5)(2 x-5)=0 \\
2 x-5=0 \\
x=\frac{5}{2}
\end{array} .
\end{gathered}
$$

$$
\begin{aligned}
& \text { n) } \quad 2 x-40=-x^{2}+8 \\
& x^{2}+2 x-48=0 \\
& (x-6)(x+8)=0 \\
& x-6=0 \quad x+8=0 \\
& x=6 \quad x=-8
\end{aligned}
$$

p) $x^{2}-16 x+64=0$

$$
\begin{aligned}
& (x-8)(x-8)=0 \\
& x-8=0
\end{aligned}
$$

$x=8$
r)

$$
\begin{gathered}
6 x^{2}+20 x=0 \\
2 x(3 x+10)=0 \\
2 x=0 \quad 3 x+10=0 \\
x=0 \quad x=\frac{-10}{3}
\end{gathered}
$$

$$
\begin{aligned}
& 3 x^{2}+6 x-10=2 x^{2}+6 \\
& 3 x^{2}-2 x^{2}+6 x-10-6=0 \\
& x^{2}+6 x-16=0 \\
& (x+8)(x-2)=0 \\
& x+8=0 \quad x-2=0 \\
& x=-8 \quad x=2
\end{aligned}
$$

Ex) Determine a quadratic equation that has roots of $-1 / 4$ and
5.

$$
\begin{aligned}
& x=-1 / 4 \\
& 4 x=-1 \\
& 4 x+1=0
\end{aligned}
$$

$$
\underbrace{x-5}=0
$$

$$
x=?
$$

Ex) Solve the following quadratic equation.

$$
\begin{aligned}
& x(2 x-3)+4(x+1)=2(3+2 x) \\
& 2 x^{2}-3 x+4 x+4=6+4 x \\
& 2 x^{2}-3 x+4 x+4-6-4 x=0 \\
& 2 x^{2}-3 x-2=0 \\
& (2 x+1)(x-4)=0
\end{aligned}
$$

Ex) The length of a soccer pitch is 20 m less than twice its width. The area of the pitch is $6000 \mathrm{~m}^{2}$. Find its dimensions.

$$
L \times W=\text { Area }
$$

$2 x-20$ $2(60)-20$
$=100 \mathrm{~m}$

Now Try
Page 229 \#1, 2, 3, 5, 6, 7-10 (b, d, \& f)
$11,12,15,17,24,26$

Solving Quadratic Equations by Completing the Square:
Ex) Solve the following:

$$
\sqrt{x^{4}}=\sqrt{81}
$$

$$
x=99
$$

$$
(x-3)^{2}=100
$$

$$
\sqrt{(x-3)^{2}}=\sqrt{100}
$$

Expressions of the Form $a x^{2}+c=0$ or $a(x-p)^{2}+c=0$ Can be Solved by:

- Isolate the term that is squared.
- Take the square root of both sides of the equation.
*Remember when taking the square root we must consider both the positive and negative situation.
- Break equation into 2 separate equations (+'ve case and -'ve case), then solve each separately.
*Leave answers in reduced radical form if necessary.
Ex) Solve the following using the square root principle.

c) $(a+5)^{2}-6=30$
$(a+5)^{2}=36$
d. $x^{a+5)^{2}}=\sqrt{56}$
$c^{a+5= \pm 6}$
$a+5=6$
$a+5=-6$
$a=T$
e) $\frac{Z(2 x-6)^{2}}{\not Z}=\frac{88}{2}$

$$
\begin{aligned}
& \frac{2}{2} \\
& \sqrt{(2 x-6)^{2}}=44 \\
& 2 x-6=\frac{2}{2} \\
& \frac{2 x}{2}=\frac{\sqrt{44}}{2}
\end{aligned} \quad x=\sqrt{11}+3\left\{\begin{array}{l}
\frac{4(y+1)^{2}}{x}=\frac{7}{4} \\
(y+1)^{2}=\frac{7}{4} \\
y+1= \pm \sqrt{\frac{7}{4}} \\
y+1 \\
y+1= \pm \frac{\sqrt{7}}{2}-1
\end{array} \rightarrow y=\frac{\sqrt{7}}{2}-1\right.
$$

Equations in the Form $a x^{2}+b x+c=0$ Can be solved by:

- Bring all terms to one side of the equation (let it $=0$)
- Complete the square putting the one side of the equation into standard form.
- Isolate the term that is squared.
- Take the square root of both sides of the equation *Remember when taking the square root we must consider both the positive and negative situation
- Break equation into 2 separate equations (+'ve case and -'ve case), then solve each separately.
*Leave answers in reduced radical form if necessary.

Ex) Solve the following by completing the square.

$$
\begin{gathered}
\text { a) } x^{2}+6 x-27=0 \\
x^{2}+6 x+9-9-27=0 \\
(x+3)^{2}-36=0 \\
(x+3)^{2}=36 \\
x(x+3)^{2}=\sqrt{36} \\
x+3= \pm 6 \\
x+3=6 \quad x \quad x=3=-6 \\
x=3 \quad x=-9
\end{gathered}
$$

$$
\begin{aligned}
& \text { c) } x^{2}+8 x+11=0 \\
& x^{2}+8 x+16-\underbrace{-16}+11=0 \\
& (x+4)^{2}-5=0 \\
& (x+4)^{2}=5 \\
& \sqrt{(x+4)^{2}}=\sqrt{5}
\end{aligned}
$$

$$
r^{x+4= \pm \sqrt{5}}
$$

$$
x+4=\sqrt{5}
$$

$$
x=\sqrt{5}-4
$$

$$
\begin{aligned}
& \text { b) } \begin{array}{l}
2 x^{2}-x=10 \\
2 x^{2}-x-10=0 \\
2\left[x^{2}-\frac{x}{2}-5\right]=0 \\
2\left[x^{2}-\frac{x}{2}+\frac{1}{16}-\frac{1}{16}-5\right]=0 \\
2\left[\left(x-\frac{1}{4}\right)^{2}-\frac{81}{16}\right]=0 \\
2(x-1 / 4)^{2}-\frac{81}{8}=0 \\
\frac{2(x-1 / 4)^{2}}{2}=\frac{\frac{81}{8}}{2}
\end{array} \$=\frac{1}{2}
\end{aligned}
$$

d) $2 x^{2}-5 x=1$

$$
\begin{aligned}
& 2\left[x^{2}-\frac{5}{2} x-\frac{1}{2}\right]=0 \\
& 2\left[x^{2}-\frac{5}{2} x+\frac{25}{16}-\frac{25}{16}-\frac{1}{2}\right]=0 \\
& 2\left[\left(x-\frac{5}{4}\right)^{2}-\frac{33}{16}\right]=0 \\
& 2\left(x-\frac{5}{4}\right)^{2}-\frac{33}{8}=0 \quad x-\frac{5}{4}=\frac{\sqrt{33}}{4} \\
& \frac{2\left(x-\frac{5}{4}\right)^{2}}{x}=\frac{\frac{33}{8}}{2} \quad x=\frac{\sqrt{33}+5}{4} \\
& \sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{33}{16}} \quad x-\frac{\sqrt{3}}{4}= \pm \frac{\sqrt{33}}{4}=\frac{-\sqrt{33}}{4} \\
& x=\frac{-\sqrt{33}+5}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } 4 x^{2}-12 x+9=0 \\
& \text { f) } x^{2}-8 x=-21 \\
& 4\left[x^{2}-3 x+\frac{9}{4}\right]=0 \\
& x^{2}-8 x+21=0 \\
& 4\left[\left(x-\frac{3}{2}\right)^{2}\right]=0 \\
& x^{2}-8 x+16-\underbrace{16+21}=0 \\
& (x-4)^{2}+5=0 \\
& \sqrt{(x-4)^{2}}=\sqrt{-5} \\
& \frac{x\left(x-\frac{3}{2}\right)^{2}}{x}=\frac{0}{4} \\
& \sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{0} \\
& x-\frac{3}{2}=0 \\
& x=\frac{3}{2} \\
& \text { g) } x^{2} 14 x+1=0 \\
& x^{2}+14 x+49-49+1=0 \\
& (x+7)^{2}-48=0 \\
& (x+7)^{2}=48 \\
& \sqrt{(x+7)^{2}}=\sqrt{48} \\
& {\underset{x+7}{2}=4 \sqrt{3} \quad x= \pm 4 \sqrt{3}}_{x+7=-4 \sqrt{3}}^{x+7 x=4 \sqrt{2} 7} \\
& x=4 \sqrt{3}-7 \quad x=4 \sqrt{3}-7 \\
& \text { h) } 3 x^{2}-11 x=10
\end{aligned}
$$

Ex) A picture that measures 10 cm by 5 cm is to be surrounded by a mat before being framed. The width of the mat is to be the same on all sides of the picture. The area of the mat is to be twice the area of the picture. What is the width of the mat?

Area Procure $=50 \mathrm{~cm}^{2}$

Area Mat $=100 \mathrm{am}^{2}$

$$
\begin{aligned}
& (2 x+10)(2 x+5)-50=100 \\
& (2 x+10)(2 x+5)=150 \\
& 4 x^{2}+30 x+50=150 \\
& 4 x^{2}+30 x-100=0 \\
& 4\left[x^{2}+\frac{30}{4} x-25\right]=0 \\
& 4\left[x^{2}+\frac{30}{4} x+\frac{225}{16}-\frac{255}{16}-25\right]=0 \\
& 4\left[\left(x+\frac{30}{8}\right)^{2}-\frac{625}{16}\right]=0 \quad \sqrt{\left(x+\frac{30}{8}\right)^{2}}=\sqrt{\frac{625}{16}} \\
& 4\left(x+\frac{30}{8}\right)^{2}-\frac{625}{4}=0 \quad x+\frac{30}{8}==\frac{25}{4} \\
& \frac{A\left(x+\frac{30}{8}\right)^{2}}{4}=\frac{\frac{625}{4}}{4} \quad x+\frac{30}{8}-\frac{25}{4}
\end{aligned}
$$

$F+\frac{5}{2}$
$=2.5 \mathrm{~cm}$

Solving Quadratic Equations using the Quadratic Formula:
Complete the square and then solve the following:

$$
\left\{a x^{2}+b x+c=0\right\}
$$

$$
a\left[x^{2}+\frac{b}{a} x+\frac{c}{a}\right]=0
$$

$a\left[x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}\right]=0$
$a\left[\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}} \cdot \frac{4 a c}{4 a^{2}}\right]=0$

$$
a\left[\left(x+\frac{b}{z a}\right)^{2}-\frac{b^{2}+4 a c c}{4 a^{2}}\right]=0
$$

$$
a\left(x+\frac{b}{3 a}\right)^{2}-\frac{b^{2}+4 a c}{4 a}=0
$$

Solus for x.

$$
\begin{aligned}
& a\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a} \\
& \left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}} \\
& \sqrt{\left(x+\frac{b}{2 a}\right)^{2}}=\sqrt{\frac{b^{2}-4 a c}{4 a^{2}}} \\
& x+\frac{b}{2 a}=\frac{: \sqrt{b^{2}-4 a c}}{2 a} \\
& p
\end{aligned}
$$

Quadratic Formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Ex) Solve the following using the quadratic formula.

$$
\begin{array}{ll}
a=1 & x=\frac{-3 \pm \sqrt{3^{2}-4(1 x-28)}}{2(1)} \\
b=3 \\
c=-28 & =\frac{-3 \pm \sqrt{121}}{2} \\
& =\frac{-3 \pm 11}{2}, x=x=x
\end{array}
$$

c) $x^{2}-2 x-1=0$
b) $3 x^{2}+5 x=2 \rightarrow 3 x^{2}+5 x-2=0$

$$
\text { b) } 3 x^{2}+5 x=2 \rightarrow 3 x^{2}+5 x-2=0
$$

$$
\left\{\begin{array}{l}
a=3 b=5 \quad c=-2 \\
x=\frac{-5 \pm \sqrt{5^{2}-4(3)(-2)}}{2(3)}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
=\frac{-5 \pm \sqrt{49}}{6} \\
=\frac{-5 \pm 7}{6}
\end{array} \quad \begin{array}{l}
x=\frac{-5+7}{6} \times \frac{x=-97}{6} \\
x=x=-2
\end{array}\right.
$$

d) $\frac{2}{x+1}+\frac{3}{x-2}=\frac{2 x^{2}}{x^{2}-x-2}$

$$
\begin{aligned}
& a=1 \quad b=-2 \quad c=-1 \\
& x=\frac{2 \pm \sqrt{(-2)^{2}-4(1 X-1)}}{2(1)} \\
& =\frac{2 \pm \sqrt{8}}{2} \\
& =\frac{2 \pm 2 \sqrt{2}}{2} \\
& =1 \pm \sqrt{2} \\
& \begin{array}{ll}
x & x \\
x=1+\sqrt{2} & x=1-\sqrt{2}
\end{array} \\
& \frac{2(x-1)(x-2)}{(x-1)}+\frac{2(x+1)(x-2)}{(x-2)}=\frac{2 x^{2}(x+2 x-2}{\left.\ln +x^{2}-2\right)^{2}} \\
& \begin{array}{l}
2 x-4+3 x+3=2 x^{2} \\
-2 x^{2}+5 x-1=0 \quad a=-2 \quad b=5 \quad c=-1
\end{array} \\
& x=\frac{-5 \pm \sqrt{5-4(-2 x-1)}}{2(-2)} \\
& \begin{array}{l}
=\frac{-5 \pm \sqrt{17}}{-4} \\
x=5-\sqrt{17} \\
x
\end{array}>\frac{x=\frac{5+\sqrt{17}}{4}}{} \\
& x=\frac{5-\sqrt{17}}{4}
\end{aligned}
$$

Ex) Lindsay travelled from Calgary to Spokane, a distance of 720 km . On the return trip her average speed was $10 \mathrm{~km} / \mathrm{h}$ faster. If the total driving time was 17 hours, what was Lindsay's average speed from Calgary to Spokane?

$$
\begin{aligned}
& d=v t \\
& t=\frac{d}{v}
\end{aligned}
$$

$$
\text { Time to }+\pi_{m e} \text { back }=17
$$

$$
\frac{720}{x}+\frac{720}{x+10}=17
$$

$$
\frac{720(x)(x+10)}{x}+\frac{720(x)(x+10)}{x+10}=17(x)(x+10)
$$

$$
\begin{aligned}
& 720 x+7200+720 x=17\left(x^{2}+10 x\right) \\
& 1440 x+7200=17 x^{2}+170 x
\end{aligned}
$$

$$
0=17 x^{2}+170 x-1440 x-7200
$$

$$
0=17 x^{2}-1270 x-7200
$$

$$
x=\frac{1270 \pm \sqrt{(-1270)^{2}-4(17)(-7200)}}{2(17)}
$$

$\pi=80 \mathrm{~km} / \mathrm{m}$ or $x=-\frac{90}{7 \pi} \mathrm{ka} / \mathrm{h} \leftrightarrow$ Makes no sore

The Discriminant:
The Discriminant is the part of the quadratic formula that is inside the square root.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \longrightarrow b^{2}-4 a c
$$

- If $b^{2}-4 a c>0$ then, 2 Solutions $/ 2$ roots $/ 2$ interapis
- If $b^{2}-4 a c=0$ then, $/$ Solution
- If $b^{2}-4 a c<0$ then, no Solution

Ex) Determine the nature of the roots for the following.
(Determine how many answers the following will have.)
a) $x^{2}-x-5=0$

$$
\begin{aligned}
& a=1 \\
& b=-1 \\
& c=-5=(-1)^{2}-4(1)(-5) \\
&=1+20 \\
&=21>0 \quad .2 \text { solutions }
\end{aligned}
$$

b) $x^{2}-8 x+16=0$

$$
\begin{aligned}
& b^{2}-4 a c \\
= & (-8)^{2}-4(1 \times(6) \\
= & 64-64 \\
= & 0 \quad \therefore \text { solution }
\end{aligned}
$$

$$
a=1
$$

$$
b=-8
$$

$$
c=1 b
$$

$$
\begin{cases}\text { d) } 2 x^{2}+3 x=4 \rightarrow 2 x^{2}+3 x-4=0 \\ b^{2}-4 a c & a=2 \\ =(3)^{2}-4(2 x-4) & b=3 \\ =a+32 & c=-4 \\ =41>0 & \therefore 2 \text { solutions }\end{cases}
$$

Ex) Find the value of k so that $-2 x^{2}+4 x+k=0$ has no real roots.
 c value
discriminant <0

$$
\begin{aligned}
& b^{3}-4 a c<0 \\
& 4^{2}-4(-2)(k)<0 \\
& 16+8 k<0 \\
& \frac{8 k<-\frac{16}{8}}{8}<-2
\end{aligned}
$$

$$
\begin{aligned}
& a=-2 \\
& b=4 \\
& c=k
\end{aligned}
$$

