Lesson 8: Surface area of right pyramids and right cones

Scheduled Review

What is the area of the rectangle in cm^2 to the nearest tenth?

Example 2

Determining the Surface Area of a Right Rectangular Pyramid

A right rectangular pyramid has base dimensions 8 ft. by 10 ft. and a height of 16 ft. Calculate the surface area of the pyramid for the nearest square foot.

SA = Sum of area of each face

$$= 80 \, \text{ft}^2 + 2(82.5) + 2(66.8 \, \text{ft}^2) \, \text{LoA} = \text{Right}$$

$$= 804^{2} + 1654^{2} + 133.64^{2}$$

$$= 378.64^{2} + 133.64^{2}$$

Right Cone

slant height

Surface area = lateral area + base area

For a right cone with slant height s and base radius r:

Note: A right circular cone is usually called a right cone

height

r=radius
(conterto outer)
d=diameter
(entire distance area

S=Slant height

A right cone has a base radius of 2ft, and a height of 7 ft.

Calculate the surface area of the cone to the nearest square foot.

$$a^{2} + b^{2} = c^{2}$$

$$2^{2} + 7^{2} = c^{2}$$

$$4 + 49 = c^{2}$$

$$53 = c^{2}$$

$$c = 7264$$

Example 4 Determining an Unknown Measurement

The lateral area of a cone is 220 cm². The diameter of the cone is 10 cm

Determine the height of the cone to the nearest tenth of a centimetre.

* * In order to solve for h, solve for S **

$$\frac{\pi r}{\pi} = \frac{220 \text{ cm}^3}{\pi r}$$

$$5 = \frac{220 \text{ cm}^2}{\pi (5 \text{ cm})}$$

$$= 14 \text{ cm}$$

Example 5:

The great pyramid of Giza has a square base with length 755 ft. and an original height of 481 ft. Determine its original surface area to the nearest square foot.

Note: When an object's base is not seen, like in this question's pyramid, the base is not calculated as part of the surface area.

Example 6:

A farmer unloaded grain onto a tarp on the ground. The gain formed a cone-shaped pole that had a diameter of 12 ft. and a height of 8 ft. Determine the surface area of the exposed grain to the nearest square foot.

Home-work pg 34-35 #4,6,7,8,9,11 and 16

Example 5:

The great pyramid of Giza has a square base with length 755 ft. and an original height of 481 ft. Determine its original surface area to the nearest square foot.

Note: When an object's base is not seen, like in this question's pyramid, the base is not calculated as part of the surface area.

$$SA = Sum \ \delta F$$
 the \triangle areas
$$= 4 \left(\text{area } F \text{ triangle} \right)$$

$$= 4 \left(\frac{B \times H}{2} \right)$$

48/g 377 SER

$$a^2+b^2=c^2$$
 $481^2+377.5^2=c^2$

$$23|36| + |4256.25 = c^{2}$$

$$373.861.25 = c^2$$

(is the height of our triangle.

$$SA = 4 (B \times H)$$

$$= 4 (165 + 611.44)$$

$$= 923 214 + 4^{2}$$

